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Abstract. In this paper, limit periodic and almost periodic homogeneous linear differ-
ence systems are considered. We study the systems in which the coefficient matrices
are taken from a given bounded group and the elements of the matrices are from an
infinite field with an absolute value. We show a condition on limit periodic and almost
periodic systems which ensures, that the considered systems can be transformed into
new systems having certain properties. The new systems possess non-asymptotically
almost periodic solutions. The transformation can be done by arbitrarily small changes.
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1 Introduction

We consider the homogeneous linear difference systems of the form

xk+1 = Ak · xk, (1.1)

where Ak ∈ X. We suppose, that X is a bounded group of square matrices over an infinite
field. The cases, when sequences {Ak} are limit periodic and almost periodic, are studied. We
are interested in non-asymptotically almost periodic solutions of the considered systems. Our
current research is motivated by the following two facts. The smallest class of systems (1.1),
which can have at least one non-asymptotically almost periodic solution and which generalize
the pure periodic case, is formed by the limit periodic systems. The most studied class is given
by the almost periodic systems.

Our main motivation comes from papers [7,12,13,22,23,26]. Papers [22] and [23] (and also
[20]) are devoted to unitary and orthogonal homogeneous linear difference systems (1.1). It
is shown in [22, 23], that, in any neighbourhood of any orthogonal or unitary system, there
exists a system of the form (1.1) with a non-almost periodic solution. In papers [7, 12, 13, 26],
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general systems of the form (1.1) are studied. In [7,13], it is supposed, that X is a commutative
group. In [12, 26], transformable groups are studied. The results of these papers say that, in
an arbitrary neighbourhood of any considered system (1.1), there exists a system of the same
form without any almost periodic solution other than the trivial one. Our main goal is to
complement these results. We investigate more general situations and show, that the systems
of the form (1.1) with non-asymptotically almost periodic solutions form a dense subset of the
set of all considered systems as well. To prove this result, we improve the method based on
constructions introduced in papers [24, 25].

The almost periodic (and also limit periodic) systems are studied closely. There are many
papers from the field of almost periodic linear systems. In this paragraph, we point out the
most relevant of them. In books [4, 8, 10, 19, 29], one can find the basic properties of limit
periodic and almost periodic sequences and functions. The linear almost periodic equations,
with regard to the almost periodicity of their solutions, are analyzed in, e.g., [1, 30]. For
general difference systems, criteria of the existence of almost periodic solutions are presented
in [31, 32]. Concerning linear almost periodic difference systems and their almost periodic
solutions, we can refer to [5, 6, 30] (and also [11, 14]). We refer to papers [2, 15, 18] for other
properties of (complex) almost periodic systems. The findings about the skew-Hermitian and
skew-symmetric differential systems, which correspond to ones from [22, 23], can be found
in [25] and [27], respectively. For almost periodic solutions of these systems, we can refer
to [16, 17, 21] as well. Further, if one considers limit periodic homogeneous linear difference
systems with respect to their almost periodic solutions, then the properties of such systems
can be found in [7, 13, 28].

This paper is organized as follows. In the next section, we introduce the notation that
is used in the whole paper, and we recall some elementary properties of infinite fields with
absolute values. In Section 3, we recall the definitions of limit periodicity, almost periodicity,
and asymptotic almost periodicity. To define these notions, we recall the Bohr and also the
Bochner concept. In the final section, we give the basic motivation explicitly and we formulate
and prove the main theorem.

2 Preliminaries

Let F be an infinite field. Let | · | : F→ R be an absolute value on F. Then, the properties

(i) | f | ≥ 0 and | f | = 0⇔ f = 0,

(ii) | f + g| ≤ | f |+ |g|,

(iii) | f · g| = | f | · |g|

hold for every f , g ∈ F, where symbol 0 stands for the real number and, at the same time, for
the zero element of F. Note that we will later denote also the zero vector and the zero matrix
by the same symbol. Let m ∈ N be arbitrarily given. We denote the set of all square matrices
of dimension m with elements in F by symbol Matm(F) and the set of all m× 1 vectors with
elements in F by symbol Fm. Using the absolute value, we can define the norms ‖ · ‖ on Fm,
Matm(F) as the sums of the absolute values of the elements. We have

(i) ‖A‖ ≥ 0 and ‖A‖ = 0⇔ A = 0,

(ii) ‖A + B‖ ≤ ‖A‖+ ‖B‖,
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(iii) ‖ f · A‖ = | f | · ‖A‖

for all f ∈ F and A, B ∈ Matm(F) or A, B ∈ Fm. We denote the identity matrix in Matm(F) as I.
The absolute value on F and the norms on Fm, Matm(F) induce the corresponding metrics.
For simplicity, each of these metrics will be denoted by symbol $(·, ·). Then, we consider the
δ-neighbourhoods in these metrics as

Oδ(A) = {B | $(B, A) < δ} ,

where A, B ∈ F, Fm or Matm(F).
Let X ⊂ Matm(F) be a bounded group. In particular, for every matrix A ∈ X, there exists

the inverse matrix A−1 ∈ X and a number H > 0 satisfying ‖A‖ ≤ H for every A ∈ X. Let us
denote the set of all limit periodic and almost periodic sequences in X by symbol LP(X) and
AP(X), respectively. For the notion of limit and almost periodicity, see Definitions 3.1 and
3.2 below. In AP(X), we consider the metric

$ ({Ak}, {Bk}) = sup
k
‖Ak − Bk‖ .

For the reader’s convenience, the δ-neighbourhoods in this set are again denoted by Oδ. We
put N0 = N∪ {0}.

3 Limit, almost, and asymptotic almost periodicity

We recall the definitions of limit periodic, almost periodic, and asymptotically almost periodic
sequences and we mention their properties, which we will need in the proof of the main
theorem. The general metric space (M, $) is considered. First, we recall the definition of limit
periodicity. Note that it can be defined in another equivalent manner (see [3]).

Definition 3.1. We say that a sequence {ϕk}k∈N0 is limit periodic if there exists a sequence of
periodic sequences {ϕn

k}k∈N0 ⊆ M, n ∈ N, such that limn→∞ ϕn
k = ϕk and the convergence is

uniform with respect to k ∈N0.

Next, we recall the concept of almost periodicity. It can be also defined in several equiv-
alent ways. As a definition, we remind the so-called Bohr concept of almost periodicity. We
also recall the so-called Bochner concept in the theorem below.

Definition 3.2. A sequence {ϕk}k∈Z ⊆ M is called almost periodic if, for any ε > 0, there
exists r(ε) ∈ N such that any set consisting of r(ε) consecutive integers contains at least one
number l ∈ Z satisfying

$ (ϕk+l , ϕk) < ε, k ∈ Z.

Theorem 3.3. Let {ϕk}k∈Z ⊆ M be given. The sequence {ϕk}k∈Z is almost periodic if and only if
any sequence {ln}n∈N0

⊆ Z has a subsequence {l̄n}n∈N0 ⊆ {ln}n∈N0
such that, for any ε > 0, there

exists K(ε) ∈N satisfying

$
(

ϕk+l̄i , ϕk+l̄j

)
< ε, i, j > K(ε), k ∈ Z. (3.1)

Proof. See, e.g., [24].

To complete this section, we also recollect the definition of asymptotic almost periodicity.
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Definition 3.4. A sequence {ϕk}k∈N0 ⊆ M is called asymptotically almost periodic if, for any
ε > 0, there exists r(ε) ∈ N and m(ε) ∈ N such that any set consisting of r(ε) consecutive
positive integers contains at least one number l ∈N satisfying

$ (ϕk+l , ϕk) < ε, k > m(ε), k ∈N.

Note that, in Banach spaces, any asymptotically almost periodic sequence is the sum of an
almost periodic sequence and a sequence, which vanishes at infinity. Similarly, as in the case
of almost periodicity, we remind the equivalent concept of asymptotic almost periodicity.

Theorem 3.5. Let {ϕk}k∈N0
⊆ M be given. The sequence {ϕk}k∈N0

is asymptotically almost periodic
if and only if any sequence {ln}n∈N0

⊆ Z, limn→∞ ln = ∞ has a subsequence {l̄n}n∈N0 ⊆ {ln}n∈N0

such that, for any ε > 0, there exists K(ε) ∈N satisfying

$
(

ϕk+l̄i , ϕk+l̄j

)
< ε, i, j > K(ε), k ∈N0. (3.2)

Proof. See [9].

4 Results

In the beginning of this section, we call up the most relevant known results. By doing this,
one can see, how our result complements our motivations.

Theorem 4.1. Let X ⊆ Matm(F) be a commutative group. Let, for every non-zero vector u ∈ Fm,
there exist ξ > 0 such that, for every δ > 0, there exist matrices M1, . . . , Ml ∈ X satisfying

Mi ∈ Oδ(I), i ∈ {1, . . . , l}, ‖Ml · · ·M1 · u− u‖ > ξ. (4.1)

Let ε > 0 and a non-zero vector u ∈ Fm be arbitrary. For any {Ak}k∈N0 ∈ LP(X ), there exists
{Sk}k∈N0 ∈ Oε({Ak}k∈N0) ∩ LP(X ) such that the solution of

xk+1 = Sk · xk, k ∈N0, x0 = u

is not almost periodic.

Proof. See [13].

Theorem 4.2. Let X ⊆ Matm(F) be a commutative group. Let there exist ξ > 0 such that, for
every δ > 0, there exists l ∈ N such that, for every u ∈ Fm fulfilling ‖u‖ ≥ 1, there exist ma-
trices M1, . . . , Ml ∈ X with the property that (4.1) is valid. Let ε > 0 be arbitrary. Then, for
every {Ak}k∈N0 ∈ LP(X ) and every sequence {un}n∈N of non-zero vectors un ∈ Fm, there exists
{Sk}k∈N0 ∈ Oε({Ak}k∈N0) ∩ LP(X ) such that the solution of

xk+1 = Sk · xk, k ∈N0, x0 = un

is not almost periodic for any n ∈N.

Proof. See [7].
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Theorem 4.3. Let (F, $) be separable. Let X ⊆ Matm(F) be a bounded group. Let there exist ξ > 0
such that, for every δ > 0, there exists l ∈ N such that, for every u ∈ Fm fulfilling ‖u‖ ≥ 1, there
exist matrices M1, . . . , Ml ∈ X with the property that

M1 ∈ Oδ(I), Mi+1 ∈ Oδ(Mi), i ∈ {1, . . . , l − 1}, ‖Ml · u− u‖ > ξ. (4.2)

Let ε > 0 be arbitrary. Then, for every {Ak}k∈N0 ∈ LP(X ), there exists {Sk}k∈N0 ∈ Oε({Ak}k∈N0)∩
LP(X ) such that the system

xk+1 = Sk · xk, k ∈N0

does not have any non-zero asymptotically almost periodic solution.

Proof. See [28].

Theorem 4.4. Let (F, $) be separable. Let X ⊆ Matm(F) be a bounded group. Let there exist ξ > 0
such that, for every δ > 0, there exists l ∈ N such that, for every u ∈ Fm fulfilling ‖u‖ ≥ 1, there
exist matrices M1, . . . , Ml ∈ X with the property that (4.2) is valid. Let ε > 0 be arbitrary. Then, for
every {Ak}k∈Z ∈ AP(X ), there exists {Sk}k∈Z ∈ Oε({Ak}k∈Z) such that the system

xk+1 = Sk · xk, k ∈N0

does not have any non-zero asymptotically almost periodic solution.

Proof. See [28].

For the reader’s convenience (see Theorem 4.6 below), we recall the definitions of trans-
formable and weakly transformable groups (for further informations, see, e.g., [12, 26]).

Definition 4.5. We say that an infinite set X ⊆ Matm(F) is transformable, if it meets the
following conditions:

(i) for all A, B ∈ X , it holds
A · B ∈ X , A−1 ∈ X ;

(ii) for any L ∈ (0, ∞) and ε > 0, there exists p = p(L, ε) ∈ N such that, for any n ≥ p
(n ∈ N) and any sequence {C0, C1, . . . , Cn} ⊂ X , L ≤ $(Ci, 0), i ∈ {0, . . . , n}, one can
find a sequence {D1, . . . , Dn} ⊂ X for which

Di ∈ Oε(Ci), i ∈ {1, . . . , n}, Dn · · ·D1 = C0;

(iii) the multiplication of matrices is uniformly continuous on X and has the Lipschitz prop-
erty on a neighbourhood of I in X ;

(iv) for any L ∈ (0, ∞), there exists Q = Q(L) ∈ (0, ∞) such that, for every ε > 0 and
C, D ∈ X \ OL(0) satisfying C ∈ Oε(D), it is valid that

C−1 · D, D · C−1 ∈ Oε·Q(I).

The group X is weakly transformable if there exist a transformable group X0 ⊂ X , matrices
X1, . . . , Xl ∈ X , and δX > 0 such that the following conditions hold:

(i) any U ∈ X can be expressed as U = C(U) · Xj for some C(U) ∈ X0, j ∈ {1, . . . , l};

(ii) $(C · Xi, D · Xj) > δX for all C, D ∈ X0, i 6= j, i, j ∈ {1, . . . , l}.
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Theorem 4.6. Let (F, $) be complete. Let X ⊆ Matm(F) be weakly transformable. Let there exist
a sequence {Mi}n∈N ⊆ X0 such that, for any non-zero vector u ∈ Fm, one can find i = i(u) ∈ N

satisfying Mi · u 6= u. Let ε > 0 be arbitrary. If {Ak}k∈Z ∈ AP(X ), then there exists {Sk}k∈Z ∈
Oε({Ak}k∈Z) such that the system

xk+1 = Sk · xk, k ∈ Z,

does not possess a non-trivial almost periodic solution.

Proof. See [12].

Before we formulate the main result of this paper, we recall some elementary properties of
the bounded group X. We use them in the proof of the main theorem.

Lemma 4.7. Let Vk ∈ X and Mk ∈ X, k ∈ {0, . . . , K}, be given matrices. Then, there exist matrices
Tk ∈ X, k ∈ {0, . . . , K}, such that:

(i) MK · · ·M0 ·VK · · ·V0 = VK · TK · · ·V0 · T0;

(ii) MK · · ·M0 ·VK · · ·V0 = TK ·VK · · · T0 ·V0

hold. Moreover, one can assume that Tk ∈ OH2δ(I) if Mk ∈ Oδ(I), and Tk = I if Mk = I.

Proof. It is seen, that the matrices

TK = V−1
K ·MK ·VK,

TK−1 = (VK ·VK−1)
−1 ·MK−1 ·VK ·VK−1,

...

T0 = (VK · · ·V0)
−1 ·M0 ·VK · · ·V0

satisfy the equality in the part (i). Analogously, the matrices

TK = MK,

TK−1 = (VK)
−1 ·MK−1 ·VK,

...

T0 = (VK · · ·V1)
−1 ·M0 ·VK · · ·V1

satisfy the equality in (ii). It holds

‖V−1 ·Mk ·V − I‖ ≤ ‖V−1‖ · ‖Mk − I‖ · ‖V‖ ≤ H2 · ‖Mk − I‖

for every V ∈ X, k ∈ {0, . . . , K}, which completes the proof.

Remark 4.8. Let A, B, C ∈ X. If ‖A − I‖ > ξ and ‖C − B‖ < ξ/(2H), then ‖A · B − C‖ >

ξ/(2H) holds. It can be directly verified by the simple computation

ξ < ‖A− I‖ = ‖A · BB−1 − BB−1‖ ≤ ‖A · B− B + C− C‖ · ‖B−1‖
≤ (‖A · B− C‖+ ‖B− C‖) · H.
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Now, we can prove the announced result. We recall, that X is a bounded group.

Theorem 4.9. Let X have the property that there exists ξ > 0 such that, for every δ > 0, there exist
matrices M1, . . . , Ml ∈ X with the property that

Mi ∈ Oδ(I), i ∈ {1, . . . , l}, ‖Ml · · ·M1 − I‖ > ξ. (4.3)

Then, for every {Ak}k∈N0 ∈ LP(X) and an arbitrary positive number ε, there exists {Tk}k∈N0 ∈
Oε({Ak}k∈N0) ∩ LP(X) such that the fundamental matrix {Xk}k∈N0 of

xk+1 = Tk · xk, k ∈N0, (4.4)

is not asymptotically almost periodic.

Proof. Let ε > 0 be arbitrary. We denote ζ = ξ/(2H). We use the following construction. In
the first step of the construction, for

δ1 =
1
2
· ε

H3 , (4.5)

there exist matrices M(1)
1 , M(1)

2 , . . . , M(1)
l(δ1)
∈ Oδ1(I) (taken from (4.3)). Denote r1 = 2 · l(δ1),

i(1, 1) = 0, p(1, 1) = r1. Let us consider the matrices M(1,1)
0 = I, M(1,1)

1 = M(1)
1 , . . . , M(1,1)

p(1,1)−2 = I,
M(1,1)

p(1,1)−1 = M(1)
l(δ1)

. Then, there exist matrices T̃(1,1)
j , j ∈ {0, . . . , p(1, 1) − 1}, satisfying (see

Lemma 4.7)

M(1,1)
p(1,1)−1 · · ·M

(1,1)
0 · Ap(1,1)−1 · · · A0 = Ap(1,1)−1 · T̃

(1,1)
p(1,1)−1 · · · A0 · T̃(1,1)

0

and T̃(1,1)
0 = I, T̃(1,1)

1 ∈ OH2δ1
(I), . . . , T̃(1,1)

p(1,1)−2 = I, T̃(1,1)
p(1,1)−1 ∈ OH2δ1

(I). We define the periodic
sequence

{
T(1,1)

k

}
k∈N0

with the period p(1, 1) in the following way. If ‖Ai(1,1)‖ > 1 and

‖Ai(1,1)+r1−1 · · · A0 − I‖ < ζ, then we define T(1,1)
j = T̃(1,1)

j , j ∈ {0, . . . , p(1, 1) − 1}. In the
other cases, we define T(1,1)

0 = · · · = T(1,1)
p(1,1)−1 = I. We denote T1

k = T(1,1)
k and V1

k = Ak · T1
k for

k ∈N0.
In the second step, there exists a positive integer i(2, 1) divisible by 4 satisfying i(2, 1) >

p(1, 1). For

δ2 =
1
4
· ε

H3 ,

there exist matrices (see (4.3))

M(2)
1 , M(2)

2 , . . . , M(2)
l(δ2)
∈ Oδ2(I).

Without loss of generality, we can assume that l(δ2) ≥ l(δ1). Denote r2 = 16 · l(δ2) · l(δ1),
p(2, 1) = [i(2, 1) + r2] · p(1, 1). We consider the matrices

M(2,1)
0 = · · · = M(2,1)

i(2,1)−1 = I,

M(2,1)
i(2,1) = I, M(2,1)

i(2,1)+1 = I, M(2,1)
i(2,1)+2 = M(2)

1 ,

M(2,1)
i(2,1)+3 = I, M(2,1)

i(2,1)+4 = I, M(2,1)
i(2,1)+5 = I, M(2,1)

i(2,1)+6 = M(2)
2 ,

...

M(2,1)
i(2,1)+4(l(δ2)−1) = I, M(2,1)

i(2,1)+1+4(l(δ2)−1) = I, M(2,1)
i(2,1)+2+4(l(δ2)−1) = M(2)

l(δ2)
,

M(2,1)
i(2,1)+3+4(l(δ2)−1) = · · · = M(2,1)

p(2,1)−1 = I.
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Then, there exist matrices T̃(2,1)
j , j ∈ {0, . . . , p(2, 1)− 1}, satisfying (see Lemma 4.7)

M(2,1)
p(2,1)−1 · · ·M

(2,1)
0 ·V1

p(2,1)−1 · · ·V
1
0 = V1

p(2,1)−1 · T̃
(2,1)
p(2,1)−1 · · ·V

1
0 · T̃

(2,1)
0

and

T̃(2,1)
0 = · · · = T̃(2,1)

i(2,1)−1 = I,

T̃(2,1)
i(2,1) = I, T̃(2,1)

i(2,1)+1 = I, T̃(2,1)
i(2,1)+2 ∈ OH2δ2

(I),

T̃(2,1)
i(2,1)+3 = I, T̃(2,1)

i(2,1)+4 = I, T̃(2,1)
i(2,1)+5 = I, T̃(2,1)

i(2,1)+6 ∈ OH2δ2
(I),

...

T̃(2,1)
i(2,1)+4(l(δ2)−1) = I, T̃(2,1)

i(2,1)+1+4(l(δ2)−1) = I, T̃(2,1)
i(2,1)+2+4(l(δ2)−1) ∈ OH2δ2

(I),

T̃(2,1)
i(2,1)+3+4(l(δ2)−1) = · · · = T̃(2,1)

p(2,1)−1 = I.

We define the periodic sequence {T(2,1)
k }k∈N0 with the period p(2, 1) in the following way.

If ‖V1
i(2,1)‖ > 1/4 and ‖V1

i(2,1)+r2−1 · · ·V
1
0 − V1

i(2,1)−1 · · ·V
1
0 ‖ < ζ, then we put T(2,1)

j = T̃(2,1)
j ,

j ∈ {0, . . . , p(2, 1) − 1}. Otherwise, we define T(2,1)
0 = · · · = T(2,1)

p(2,1)−1 = I. We put V(2,1)
k =

V1
k · T

(2,1)
k , k ∈N0.

There exists a positive integer i(2, 2) divisible by 8 satisfying i(2, 2) > p(2, 1). We define
the periodic sequence {T(2,2)

k }k∈N0 with the period p(2, 2) = [i(2, 2) + r2 − r1] · p(2, 1) in the
following way. Let us consider the matrices

M(2,2)
0 = · · · = M(2,2)

i(2,2)−1 = I,

M(2,2)
i(2,2) = · · · = M(2,2)

i(2,2)+3 = I, M(2,2)
i(2,2)+4 = M(2)

1 ,

M(2,1)
i(2,1)+5 = · · · = M(2,2)

i(2,2)+11 = I, M(2,2)
i(2,2)+12 = M(2)

2 ,

...

M(2,2)
i(2,2)−3+8(l(δ2)−1) = · · · = M(2,2)

i(2,2)+3+8(l(δ2)−1) = I, M(2,2)
i(2,2)+4+8(l(δ2)−1) = M(2)

l(δ2)
,

M(2,2)
i(2,2)+5+8(l(δ2)−1) = · · · = M(2,2)

p(2,2)−1 = I.

We know that there exist matrices T̃(2,2)
j , j ∈ {0, . . . , p(2, 2)− 1}, satisfying (see Lemma 4.7)

M(2,2)
p(2,2)−1 · · ·M

(2,2)
0 ·V(2,1)

p(2,2)−1 · · ·V
(2,1)
0 = V(2,1)

p(2,2)−1 · T̃
(2,2)
p(2,2)−1 · · ·V

(2,1)
0 · T̃(2,2)

0

and
T̃(2,2)

0 = · · · = T̃(2,2)
i(2,2)−1 = I,

T̃(2,2)
i(2,2) = · · · = T̃(2,2)

i(2,2)+3 = I, T̃(2,2)
i(2,2)+4 ∈ OH2δ2

(I),

T̃(2,2)
i(2,1)+5 = · · · = T̃(2,2)

i(2,2)+11 = I, T̃(2,2)
i(2,2)+12 ∈ OH2δ2

(I),

...
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T̃(2,2)
i(2,2)−3+8(l(δ2)−1) = · · · = T̃(2,2)

i(2,2)+3+8(l(δ2)−1) = I, T̃(2,2)
i(2,2)+4+8(l(δ2)−1) ∈ OH2δ2

(I),

T̃(2,2)
i(2,2)+5+8(l(δ2)−1) = · · · = T̃(2,2)

p(2,2)−1 = I.

If ‖V(2,1)
i(2,2)‖ > 1/4 and ‖V(2,1)

i(2,2)+r2−r1−1 · · ·V
(2,1)
0 − V(2,1)

i(2,2)−1 · · ·V
(2,1)
0 ‖ < ζ, then we put T(2,2)

j =

T̃(2,2)
j , j ∈ {0, . . . , p(2, 2)− 1}. We define T(2,2)

0 = · · · = T(2,2)
p(2,2)−1 = I in the other cases. We put

T2
k = T(2,1)

k · T(2,2)
k , V(2,2)

k = V(2,1)
k · T(2,2)

k , V2
k = V(2,2)

k , k ∈N0.
We continue in the construction in the same way. Before the n-th step, we have

{Vn−1
k }k∈N0 ≡ {Ak · T1

k · T2
k · · · T

n−1
k }k∈N0 , where the sequence {T1

k · T2
k · · · T

n−1
k }k∈N0 has the

period
p(n− 1, n− 1) = [i(n− 1, n− 1) + rn−1 − rn−2] · p(n− 1, n− 2).

We denote

α(x, y) = 2
(x−1)x

2 +y, x ∈N, y ∈ {1, 2, . . . , x}, (4.6)

δj =
1
2
· 1

j
· ε

H3 , j ∈N, (4.7)

δjj = H2 · δj, j ∈N, (4.8)

rj =
j

∏
s=1

α(s, s) · l(δs), j ∈N. (4.9)

For the n-th step, there exists i(n, 1) ∈ N divisible by α(n, 1) such that i(n, 1) >

p(n− 1, n− 1). Taken from (4.3), for δn, there exist matrices

M(n)
1 , M(n)

2 , . . . , M(n)
l(δn)
∈ Oδn(I), (4.10)

where l(δn) can be taken in such a way that l(δn) ≥ l(δn−1). We denote

p(n, 1) = [i(n, 1) + rn] · p(n− 1, n− 1).

We consider the matrices
M(n,1)

0 = · · · = M(n,1)
i(n,1)−1 = I,

M(n,1)
i(n,1) = · · · = M(n,1)

i(n,1)+α(n,1)/2−1 = I,

M(n,1)
i(n,1)+α(n,1)/2 = M(n)

1 ,

M(n,1)
i(n,1)+α(n,1)/2+1 = · · · = M(n,1)

i(n,1)+α(n,1)+α(n,1)/2−1 = I,

M(n,1)
i(n,1)+α(n,1)+α(n,1)/2 = M(n)

2 ,

...

M(n,1)
i(n,1)−α(n,1)/2+1+α(n,1)(l(δn)−1) = · · · = M(n,1)

i(n,1)+α(n,1)/2−1+α(n,1)(l(δn)−1) = I,

M(n,1)
i(n,1)+α(n,1)/2+α(n,1)(l(δn)−1) = M(n)

l(δn)
,

M(n,1)
i(n,1)+α(n,1)/2+1+α(n,1)(l(δn)−1) = · · · = M(n,1)

p(n,1)−1 = I.
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There exist matrices T̃(n,1)
j , j ∈ {0, . . . , p(n, 1)− 1}, satisfying (see Lemma 4.7)

M(n,1)
p(n,1)−1 · · ·M

(n,1)
0 ·Vn−1

p(n,1)−1 · · ·V
n−1
0 = Vn−1

p(n,1)−1 · T̃
(n,1)
p(n,1)−1 · · ·V

n−1
0 · T̃(n,1)

0 (4.11)

and
T̃(n,1)

0 = · · · = T̃(n,1)
i(n,1)−1 = I,

T̃(n,1)
i(n,1) = · · · = T̃(n,1)

i(n,1)+α(n,1)/2−1 = I,

T̃(n,1)
i(n,1)+α(n,1)/2 ∈ Oδnn(I),

T̃(n,1)
i(n,1)+α(n,1)/2+1 = · · · = T̃(n,1)

i(n,1)+α(n,1)+α(n,1)/2−1 = I,

T̃(n,1)
i(n,1)+α(n,1)+α(n,1)/2 ∈ Oδnn(I),

...

T̃(n,1)
i(n,1)−α(n,1)/2+1+α(n,1)(l(δn)−1) = · · · = T̃(n,1)

i(n,1)+α(n,1)/2−1+α(n,1)(l(δn)−1) = I,

T̃(n,1)
i(n,1)+α(n,1)/2+α(n,1)(l(δn)−1) ∈ Oδnn(I),

T̃(n,1)
i(n,1)+α(n,1)/2+1+α(n,1)(l(δn)−1) = · · · = T̃(n,1)

p(n,1)−1 = I.

Next, we define the periodic sequence {T(n,1)
k }k∈N0 with the period p(n, 1). If ‖Vn−1

i(n,1)‖ >

1/n2 and ‖Vn−1
i(n,1)+rn−1 · · ·V

n−1
0 − Vn−1

i(n,1)−1 · · ·V
n−1
0 ‖ < ζ, then we put T(n,1)

j = T̃(n,1)
j , j ∈

{0, . . . , p(n, 1)− 1}. Otherwise, we define

T(n,1)
0 = · · · = T(n,1)

p(n,1)−1 = I. (4.12)

We put V(n,1)
k = Vn−1

k · T(n,1)
k , k ∈N0.

We continue in the n-th step in the same way. There exists i(n, n) ∈ N divisible by α(n, n)
such that i(n, n) > p(n, n− 1). Let us denote

p(n, n) = [i(n, n) + rn − rn−1] · p(n, n− 1).

We consider the matrices

M(n,n)
0 = · · · = M(n,n)

i(n,n)−1 = I,

M(n,n)
i(n,n) = · · · = M(n,n)

i(n,n)+α(n,n)/2−1 = I,

M(n,n)
i(n,n)+α(n,n)/2 = M(n)

1 ,

M(n,n)
i(n,n)+α(n,n)/2+1 = · · · = M(n,n)

i(n,n)+α(n,n)+α(n,n)/2−1 = I,

M(n,n)
i(n,n)+α(n,n)+α(n,n)/2 = M(n)

2 ,

...

M(n,n)
i(n,n)−α(n,n)/2+1+α(n,n)(l(δn)−1) = · · · = M(n,n)

i(n,n)+α(n,n)/2−1+α(n,n)(l(δn)−1) = I,

M(n,n)
i(n,n)+α(n,n)/2+α(n,n)(l(δn)−1) = M(n)

l(δn)
,

M(n,n)
i(n,n)+α(n,n)/2+1+α(n,n)(l(δn)−1) = · · · = M(n,n)

p(n,n)−1 = I.
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According to Lemma 4.7, there exist matrices T̃(n,n)
j , j ∈ {0, . . . , p(n, n)− 1}, satisfying

M(n,n)
p(n,n)−1 · · ·M

(n,n)
0 ·V(n,n−1)

p(n,n)−1 · · ·V
(n,n−1)
0 = V(n,n−1)

p(n,n)−1 · T̃
(n,n)
p(n,n)−1 · · ·V

(n,n−1)
0 · T̃(n,n)

0 (4.13)

and
T̃(n,n)

0 = · · · = T̃(n,n)
i(n,n)−1 = I,

T̃(n,n)
i(n,n) = · · · = T̃(n,n)

i(n,n)+α(n,n)/2−1 = I,

T̃(n,n)
i(n,n)+α(n,n)/2 ∈ Oδnn(I),

T̃(n,n)
i(n,n)+α(n,n)/2+1 = · · · = T̃(n,n)

i(n,n)+α(n,n)+α(n,n)/2−1 = I,

T̃(n,n)
i(n,n)+α(n,n)+α(n,n)/2 ∈ Oδnn(I),

...

T̃(n,n)
i(n,n)−α(n,n)/2+1+α(n,n)(l(δn)−1) = · · · = T̃(n,n)

i(n,n)+α(n,n)/2−1+α(n,n)(l(δn)−1) = I,

T̃(n,n)
i(n,n)+α(n,n)/2+α(n,n)(l(δn)−1) ∈ Oδnn(I),

T̃(n,n)
i(n,n)+α(n,n)/2+1+α(n,n)(l(δn)−1) = · · · = T̃(n,n)

p(n,n)−1 = I.

We define the periodic sequence {T(n,n)
k }k∈N0 with the period p(n, n) as follows. If

‖V(n,n−1)
i(n,n) ‖ > 1/n2 and ‖V(n,n−1)

i(n,n)+rn−rn−1−1 · · ·V
(n,n−1)
0 − V(n,n−1)

i(n,n)−1 · · ·V
(n,n−1)
0 ‖ < ζ, then we put

T(n,n)
j = T̃(n,n)

j for j ∈ {0, . . . , p(n, n)− 1}. In the other cases, we define

T(n,n)
0 = · · · = T(n,n)

p(n,n)−1 = I. (4.14)

We put Tn
k = T(n,1)

k · · · T(n,n)
k , V(n,n)

k = V(n,n−1)
k · T(n,n)

k , Vn
k = V(n,n)

k , k ∈ N0. We continue in the
same manner.

Let us define the sequence

Tk = Ak · T1
k · · · Tn

k · · · , k ∈N0.

It follows directly from the construction that, for every k ∈ N0, there exists q(k) ∈ N such
that

Tl
k = I, l 6= q(k), l ∈N. (4.15)

In other words, Tk = Ak · T
q(k)
k , k ∈ N0. Especially, Tk ∈ X for all k ∈ N0. One can also see

that
Tn

k ∈ Oδnn(I), k ∈N0, n ∈N. (4.16)

Moreover, {Ak}k∈N0 is limit periodic. Thus, we know that there exist periodic sequences
{Bn

k }k∈N0 ⊆ X satisfying (see Definition 3.1)

‖Ak − Bn
k ‖ <

1
n

, k ∈N0, n ∈N. (4.17)
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We denote the period of {Tn
k }k∈N0 as pT

n and the period of {Bn
k }k∈N0 as pB

n for any n ∈ N.
Then, the sequence {Bn

k · T1
k · · · Tn

k }k∈N0 is periodic with the period pB
n · pT

1 · · · pT
n , n ∈ N. It

holds that∥∥∥Tk − Bn
k · T1

k · · · Tn
k

∥∥∥
≤

∥∥∥Tk − Bn
k · T1

k · · · Tn
k · · ·

∥∥∥+ ∥∥∥Bn
k · T1

k · · · Tn
k · · · − Bn

k · T1
k · · · Tn

k

∥∥∥
≤ ‖Ak − Bn

k ‖ ·
∥∥∥T1

k · · · Tn
k · · ·

∥∥∥+ ∥∥∥Bn
k · T1

k · · · Tn
k

∥∥∥ · ∥∥∥Tn+1
k · · · Tn+j

k · · · − I
∥∥∥ ,

(4.18)

where j ∈N, and ∥∥∥T1
k · · · Tn

k · · ·
∥∥∥ ≤ H,

∥∥∥Bn
k · T1

k · · · Tn
k

∥∥∥ ≤ H. (4.19)

Now, from inequalities (4.17), (4.18), and (4.19), we get (see also (4.15), (4.16))

‖Tk − Bn
k · T1

k · · · Tn
k

∥∥∥ ≤ 1
n
· H + H · δ(n+1)(n+1)

for all k ∈ N0, n ∈ N. From it follows (consider limj→∞ δjj = 0 or see directly (4.7), (4.8))
that {Tk}k∈N0 is the uniform limit of the sequence of periodic sequences {Bn

k · T1
k · · · Tn

k }k∈N0 ,
n ∈ N. It means that {Tk}k∈N0 ∈ LP(X). Moreover (see (4.16) and also (4.8)), Tn

k ∈ Oδ11(I)
for every k ∈N0, n ∈N. From (4.15), we get (see (4.5), (4.8))

‖Ak − Tk‖ ≤ ‖Ak‖ ·
∥∥∥I − Tq(k)

k

∥∥∥ ≤ H · δ11 =
ε

2

for all k ∈N0. Hence,
sup
k∈N0

‖Ak − Tk‖ < ε,

i.e., {Tk}k∈N0 ∈ Oε({Ak}k∈N0).
Since X is bounded, we know that infk∈N0 ‖Xk‖ > 0. We show that the fundamental matrix

{Xk}k∈N0 , X0 = I of the system

xk+1 = Tk · xk, k ∈N0, (4.20)

is not asymptotically almost periodic. By contradiction, we suppose that the fundamental
matrix is asymptotically almost periodic. From infk∈N0 ‖Xk‖ > 0, it follows that, there exists
b ∈N satisfying ‖Xk‖ > 1/b2, k ∈N0.

Considering the construction in the steps b, b + 1, . . . , we get (see (4.15))∥∥∥Xi(b,1)+rb
− Xi(b,1)

∥∥∥
=

∥∥∥Ti(b,1)+rb−1 · · · T0 − Ti(b,1)−1 · · · T0

∥∥∥
=

∥∥∥Vb−1
i(b,1)+rb−1 · T

(b,1)
i(b,1)+rb−1 · · ·V

b−1
0 · T(b,1)

0 −Vb−1
i(b,1)−1 · T

(b,1)
i(b,1)−1 · · ·V

b−1
0 · T(b,1)

0

∥∥∥
=

∥∥∥W(b,1)
i(b,1)+rb−1 · · ·W

(b,1)
0 ·Vb−1

i(b,1)+rb−1 · · ·V
b−1
0 −W(b,1)

i(b,1)−1 · · ·W
(b,1)
0 ·Vb−1

i(b,1) · · ·V
b−1
0

∥∥∥ ,

where the matrices W(b,1)
j , j ∈ {0, . . . , i(b, 1) + rb − 1}, satisfy (see Lemma 4.7) the identities

Vb−1
i(b,1)+rb−1 · T

(b,1)
i(b,1)+rb−1 · · ·V

b−1
0 · T(b,1)

0 = W(b,1)
i(b,1)+rb−1 · · ·W

(b,1)
0 ·Vb−1

i(b,1)+rb−1 · · ·V
b−1
0 ,

Vb−1
i(b,1)−1 · T

(b,1)
i(b,1)−1 · · ·V

b−1
0 · T(b,1)

0 = W(b,1)
i(b,1)−1 · · ·W

(b,1)
0 ·Vb−1

i(b,1)−1 · · ·V
b−1
0 .



Limit and almost periodic linear difference systems 13

If ∥∥∥Vb−1
i(b,1)+rb−1 · · ·V

b−1
0 −Vb−1

i(b,1)−1 · · ·V
b−1
0

∥∥∥ ≥ ζ,

then
W(b,1)

j = T(b,1)
j = I, j ∈ {0, . . . , i(b, 1) + rb − 1},

and ∥∥∥Xi(b,1)+rb
− Xi(b,1)

∥∥∥ ≥ ζ > 0. (4.21)

If ∥∥∥Vb−1
i(b,1)+rb−1 · · ·V

b−1
0 −Vb−1

i(b,1)−1 · · ·V
b−1
0

∥∥∥ < ζ,

then W(b,1)
i(b,1)−1 · · ·W

(b,1)
0 = I and (see (4.11) and Lemma 4.7)

W(b,1)
i(b,1)+rb−1 · · ·W

(b,1)
0 = M(b)

l(δb)
· · ·M(b)

1 .

Considering Remark 4.8, we have∥∥∥Xi(b,1)+rb
− Xi(b,1)

∥∥∥ ≥ ζ > 0 (4.22)

in this case as well. Thus, we have (see (4.21) and (4.22))∥∥∥Xi(b,1)+rb
− Xi(b,1)

∥∥∥ ≥ ζ > 0 (4.23)

in the both cases.
We continue in the same manner. It holds∥∥∥Xi(b,b)+rb−rb−1

− Xi(b,b)

∥∥∥ =
∥∥∥Ti(b,b)+rb−rb−1−1 · · · T0 − Ti(b,b)−1 · · · T0

∥∥∥
=

∥∥∥V(b,b−1)
i(b,b)+rb−rb−1−1 · T

(b,b)
i(b,b)+rb−rb−1−1 · · ·V

(b,b−1)
0 · T(b,b)

0

−V(b,b−1)
i(b,b)−1 · T

(b,b)
i(b,b)−1 · · ·V

(b,b−1)
0 · T(b,b)

0

∥∥∥
=

∥∥∥W(b,b)
i(b,b)+rb−rb−1−1 · · ·W

(b,b)
0 ·V(b,b−1)

i(b,b)+rb−rb−1−1 · · ·V
(b,b−1)
0

−W(b,b)
i(b,b)−1 · · ·W

(b,b)
0 ·V(b,b−1)

i(b,b)−1 · · ·V
(b,b−1)
0

∥∥∥ .

The matrices W(b,b)
j , j ∈ {0, . . . , i(b, b) + rb − rb−1 − 1}, are taken in a such way, that (see

Lemma 4.7)

V(b,b−1)
i(b,b)+rb−rb−1−1 · T

(b,b)
i(b,b)+rb−rb−1−1 · · ·V

(b,b−1)
0 · T(b,b)

0

= W(b,b)
i(b,b)+rb−rb−1−1 · · ·W

(b,b)
0 ·V(b,b−1)

i(b,b)+rb−rb−1−1 · · ·V
(b,b−1)
0 ,

V(b,b−1)
i(b,b)−1 · T

(b,b)
i(b,b)−1 · · ·V

(b,b−1)
0 · T(b,b)

0 = W(b,b)
i(b,b)−1 · · ·W

(b,b)
0 ·V(b,b−1)

i(b,b)−1 · · ·V
(b,b−1)
0 .

If ∥∥∥V(b,b−1)
i(b,b)+rb−rb−1−1 · · ·V

(b,b−1)
0 −V(b,b−1)

i(b,b)−1 · · ·V
(b,b−1)
0

∥∥∥ ≥ ζ,

then
W(b,b)

j = T(b,b)
j = I, j ∈ {0, . . . , i(b, b) + rb − rb−1 − 1},
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and ∥∥∥Xi(b,b)+rb−rb−1
− Xi(b,b)

∥∥∥ ≥ ζ > 0. (4.24)

If ∥∥∥V(b,b−1)
i(b,b)+rb−rb−1−1 · · ·V

(b,b−1)
0 −V(b,b−1)

i(b,b)−1 · · ·V
(b,b−1)
0

∥∥∥ < ζ, (4.25)

then W(b,b)
i(b,b)−1 · · ·W

(b,b)
0 = I and (see (4.13) and Lemma 4.7)

W(b,b)
i(b,b)+rb−rb−1−1 · · ·W

(b,b)
0 = M(b)

l(δb)
· · ·M(b)

1 .

From Remark 4.8, we obtain ∥∥∥Xi(b,b)+rb−rb−1
− Xi(b,b)

∥∥∥ ≥ ζ > 0, (4.26)

if (4.25) is valid. Again, in the both cases, we have (see (4.24) and (4.26))∥∥∥Xi(b,b)+rb−rb−1
− Xi(b,b)

∥∥∥ ≥ ζ > 0. (4.27)

We can continue in the same way, when we obtain∥∥∥Xi(b+n,1)+rb+n
− Xi(b+n,1)

∥∥∥ ≥ ζ > 0, (4.28)

...∥∥∥Xi(b+n,b+n)+rb+n−rb+n−1
− Xi(b+n,b+n)

∥∥∥ ≥ ζ > 0 (4.29)

for any n ∈N.
Now we use Theorem 3.5, where we put l0 = 0, . . . , ln = rn, . . . Considering the previous

inequalities (see (4.23), (4.27), and (4.28)–(4.29)), it is seen that, for all large i, j ∈ N, i 6= j,
there exists l ∈N such that

‖Xl+li − Xl+lj‖ ≥ ζ > 0,

which is a contradiction with (3.2). Hence, the fundamental matrix of (4.20) is not asymptoti-
cally almost periodic.

The next theorem is the almost periodic version of Theorem 4.9. Note that, Theorem 4.10
is not a corollary of Theorem 4.9. It is known that, there exist almost periodic systems, which
are not limit periodic. For example {Ak} = {eik}, k ∈ Z, for the unitary group of dimension
one X = U(1). The system has a neighbourhood (in AP(X)) without limit periodic systems.

Theorem 4.10. Let X have the property that there exists ξ > 0 such that, for every δ > 0, there exist
matrices M1, . . . , Ml ∈ X with the property that (4.3) is valid. Then, for every {Ak}k∈Z ∈ AP(X)

and ε > 0, there exists {Tk}k∈Z ∈ Oε({Ak}k∈Z) such that the fundamental matrix {Xk}k∈N0 of

xk+1 = Tk · xk, k ∈N0,

is not asymptotically almost periodic.

Proof. The proof of this theorem can be lead analogously as the proof of Theorem 4.9. In
particular, the same construction can be used.
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